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1 Adjoint Operators and Annihilators

1.1 Translates of compact operators

Last time, we had that if T : B → B is compact, dim(ker(I − T )) <∞.

Proposition 1.1. im(I − T ) is closed.

Proof. Last time we showed that there exists a bounded sequence xn ∈ B such that (I −
T )xn → y. We can assume that Txn → ` ∈ B, so xn converges. In particular, xn → y + `.
If g = y + `, then (I − T )g = limn→∞(I − T )xn = y. So y ∈ im(I − T ).

To show that dim(coker(I − T )) <∞, we use duality arguments.

1.2 Adjoint operators

Let B1, B2 be Banach spaces with dual spaces B∗1 , B
∗
2 and the bilinear maps Bj ×B∗j → C

given by (x, ξ) 7→ 〈x, ξ〉.

Theorem 1.1. For every T ∈ L(B1, B2), there exists a unique operator T ∗ ∈ L(B∗2 , B
∗
1)

such that 〈Tx, η〉2 = 〈x, T ∗η〉1 for all x ∈ B1 and η ∈ B∗2 . Moreover, the map L(B1, B2)→
L(B∗2 , B

∗
1) given by T 7→ T ∗ is a linear isometry.

Proof. Let η ∈ B∗2 be fixed. The map x 7→ 〈Tx, η〉2 for x ∈ B1 is a linear continuous form
on B1 with norm supx 6=0 | 〈Tx, η〉2 |/‖x‖ ≤ ‖T‖‖η‖. Thus there exists a unique element
ξ ∈ B∗1 such that 〈Tx, η〉2 = 〈x, ξ〉1 and ‖ξ‖ ≤ ‖T‖‖η‖. The map B∗2 → B∗1 given by
η 7→ ξ is linear and continuous of norm ≤ ‖T‖. Thus, there exists a unique operator
T ∗ ∈ L(B∗2 , B

∗
1) such that 〈Tx, η〉2 = 〈x, T ∗η〉1 and ‖T ∗‖ ≤ ‖T‖.

Now, from an earlier consequence of Hahn-Banach,

‖Tx‖ = sup
η 6=0

| 〈Tx, η〉2 |
‖η‖

= sup
η 6=0

| 〈x, T ∗η〉1 |
‖η‖

≤ ‖x‖‖T ∗‖.

So ‖T‖ ≤ ‖T ∗‖, and the result follows.

Definition 1.1. The operator T ∗ is called the adjoint operator of T .
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1.3 Annihilators

Definition 1.2. Let B be a Banach space, and let W ⊆ B be a closed subspace. The
annihilator of W is defined as W o = {ξ ∈ B∗ : 〈x, ξ〉 = 0 ∀x ∈W}.

The annihilator is a closed subspace.

Theorem 1.2. Let W be a closed subspace of a Banach space B.

1. Let i : W → B be the inclusion map. Then i∗ : B∗ → W ∗ vanishes on W o and
induces an isometric bijection B∗/W o →W ∗.

2. Let q : B → B/W be the quotient map. Then q∗ : (B/W )∗ → B∗ is an isometry with
the range W o.

We have the natural isomorphisms B∗/W o ∼= W ∗ and (B/W )∗ ∼= W o.

Proof. The proof mainly consists of checking the definitions:

1. We have 〈ix, ξ〉 = 〈x, i∗ξ〉 for x ∈ W and ξ ∈ B∗. Thus, i∗ξ is the restriction of ξ to
W . So ker(i∗) = W ∗. By the Hahn-Banach theorem, every continuous linear form
on W can be extended to an element of B∗. So i∗ : B∗ →W ∗ is surjective. One can
check that for all ξ ∈ B∗, ‖i∗ξ‖W ∗ = infη∈W o ‖ξ + η‖B∗ .

2. Let q : B → B/W . Then 〈qx, η〉 = 〈x, q∗η〉, where x ∈ B and η ∈ (B/W )∗. Then q∗

is injective, as its kernel is trivial. If x ∈ W , 0 = 〈qx, η〉 = 〈x, q∗η〉, so im(q∗) ⊆ W o.
On the other hand, if ξ ∈W o, we can factor

B
w−→ B/W

q(x)7→〈x,ξ〉−−−−−−−→ C.

So if η is the second map, then ξ = q∗η. So im(q∗) = W o. We can check that
‖ξ‖B∗ = ‖η‖(B/W )∗ .

Theorem 1.3. Let T ∈ L(B1, B2) and assume that im(T ) is closed. Then im(T ∗) is
also closed, (ker(T ))o = im(T ∗), (im(T ))o = ker(T )∗, dim(ker(T )) = dim(coker(T ∗)), and
dim(ker(T ∗)) = dim(coker(T )).

Proof. Factorize T = T3T2T1, where T1 : B1 → B1/ ker(T ) is the quotient map, T2 :
B2/ ker(T ) → im(T ) is an isomorphism, and T3 : im(T ) → B2 is the inclusion map.
Then T ∗ = T ∗1 T

∗
2 T
∗
3 . T ∗3 : B∗2 → (im(T )) ∼= B∗2/(im(T ))o is surjective. T ∗2 : (im(T ))∗ →

(B1/ ker(T )) ∼= (ker(T ))o is an isomorphism. T ∗1 : (ker(T ))o → B∗1 is the inclusion map.
We get that im(T ∗) = (ker(T ))o is closed.

If T : B → B, we get (B/ im(T ))∗ ∼= (im(T ))o = ker(T ). So dim(coker(T )) =
dim(ker(T ∗)). The other identities can be derived similarly.
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